Teori
produksi adalah teori yang menjelaskan hubungan antara tingkat produksi dengan
jumlah faktor-faktor produksi dan hasil penjualan outputnya. Saat menganalisi
teori produksi, disana akan mengenal dengan istilah produksi jangka pendek.
Produksi jangka pendek adalah bila sebagian faktor seorang produsen atau
pengusaha dalam melakukan proses produksi untuk mencapai tujuannya harus
menentukan dua macam keputusan:
1. berapa output yang harus diproduksikan
2. berapa dan dalam kombinasi bagaimana faktor-faktor produksi (input) dipergunakan.
1. berapa output yang harus diproduksikan
2. berapa dan dalam kombinasi bagaimana faktor-faktor produksi (input) dipergunakan.
Untuk
menyederhanakan pembahasan secara teoritis, dalam menentukan keputusan tersebut
digunakan dua asumsi dasar:
1. bahwa produsen atau pengusaha selalu berusaha mencapai keuntungan yang maksimum
2. bahwa produsen atau pengusaha beroperasi dalam pasar persaingan sempurna.
1. bahwa produsen atau pengusaha selalu berusaha mencapai keuntungan yang maksimum
2. bahwa produsen atau pengusaha beroperasi dalam pasar persaingan sempurna.
Dalam teori
ekonomi, setiap proses produksi mempunyai landasan teknis yang disebut fungsi
produksi. Fungsi produksi adalah suatu fungsi atau persamaan yang menunjukkan
hubungan fisik atau teknis antara jumlah faktor-faktor produksi yang
dipergunakan dengan jumlah produk yang dihasilkan per satuan waktu, tanpa
memperhatikan harga-harga, baik harga faktor-faktor produksi maupun harga
produk. Secara matematis fungsi produksi tersebut dapat dinyatakan:
Y = f (X1, X2, X3, ……….., Xn)
dimana :
Y = f (X1, X2, X3, ……….., Xn)
dimana :
Y = tingkat
produksi (output) yang dihasilkan dan X1, X2, X3, ……, Xn adalah berbagai faktor
produksi (input) yang digunakan. Fungsi ini masih bersifat umum, hanya biasa
menjelaskan bahwa produk yang dihasilkan tergantung dari faktor-faktor produksi
yang dipergunakan, tetapi belum bisa memberikan penjelasan kuantitatif mengenai
hubungan antara produk dan faktor-faktor produksi tersebut. Untuk dapat
memberikan penjelasan kuantitatif, fungsi produksi tersebut harus dinyatakan
dalam bentuknya yang spesifik, seperti misalnya:
a) Y = a + bX ( fungsi linier)
b) Y = a + bX – cX2 ( fungsi kuadratis)
c) Y = aX1bX2cX3d ( fungsi Cobb-Douglas), dan lain-lain.
a) Y = a + bX ( fungsi linier)
b) Y = a + bX – cX2 ( fungsi kuadratis)
c) Y = aX1bX2cX3d ( fungsi Cobb-Douglas), dan lain-lain.
Dalam teori
ekonomi, fungsi produksi diasumsikan tunduk pada suatu hukum yang disebut :
The Law of Diminishing Returns (Hukum Kenaikan Hasil Berkurang).
Hukum ini menyatakan bahwa apabila penggunaan satu macam input ditambah sedang input-input yang lain tetap maka tambahan output yang dihasilkan dari setiap tambahansatu unit input yang ditambahkan tadi mula-mula naik, tetapi kemudian seterusnya menurun jika input tersebut terus ditambahkan.
The Law of Diminishing Returns (Hukum Kenaikan Hasil Berkurang).
Hukum ini menyatakan bahwa apabila penggunaan satu macam input ditambah sedang input-input yang lain tetap maka tambahan output yang dihasilkan dari setiap tambahansatu unit input yang ditambahkan tadi mula-mula naik, tetapi kemudian seterusnya menurun jika input tersebut terus ditambahkan.
Hubungan
produk dan faktor produksi yang digambarkan di atas mempunyai lima sifat yang
perlu diperhatikan, yaitu :
1. Mula-mula terdapat kenaikan hasil bertambah ( garis OB), di mana produk marginal semakin besar; produk rata-rata naik tetapi di bawah produk marginal.
2. Pada titik balik (inflection point) B terjadi perubahan dari kenaikan hasil bertambah menjadi kenaikan hasil berkurang, di mana produk marginal mencapai maksimum( titik B’); produk rata-rata masih terus naik.
3. Setelah titik B, terdapat kenaikan hasil berkurang (garis BM), di mana produk marginal menurun; produk rata-rata masih naik sebentar kemudian mencapai maksimum pada titik C’ , di mana pada titik ini produk rata-rata sama dengan produk marginal. Setelah titik C’
4. Pada titik M tercapai tingkat produksi maksimum, di mana produk marginal sama dengan nol; produk rata-rata menurun tetapi tetap positif.
5. Sesudah titik M, mengalami kenaikan hasil negatif, di mana produk marginal juga negatif produk rata-rata tetap positif.
1. Mula-mula terdapat kenaikan hasil bertambah ( garis OB), di mana produk marginal semakin besar; produk rata-rata naik tetapi di bawah produk marginal.
2. Pada titik balik (inflection point) B terjadi perubahan dari kenaikan hasil bertambah menjadi kenaikan hasil berkurang, di mana produk marginal mencapai maksimum( titik B’); produk rata-rata masih terus naik.
3. Setelah titik B, terdapat kenaikan hasil berkurang (garis BM), di mana produk marginal menurun; produk rata-rata masih naik sebentar kemudian mencapai maksimum pada titik C’ , di mana pada titik ini produk rata-rata sama dengan produk marginal. Setelah titik C’
4. Pada titik M tercapai tingkat produksi maksimum, di mana produk marginal sama dengan nol; produk rata-rata menurun tetapi tetap positif.
5. Sesudah titik M, mengalami kenaikan hasil negatif, di mana produk marginal juga negatif produk rata-rata tetap positif.
Dari
sifat-sifat tersebut dapat disimpulkan bahwa tahapan produksi seperti yang
dinyatakan
dalam The Law of Diminishing Returns dapat dibagi ke dalam tiga tahap, yaitu :
a. produksi total dengan increasing returns,
b. produksi total dengan decreasing returns, dan
c. produksi total yang semakin menurun.
dalam The Law of Diminishing Returns dapat dibagi ke dalam tiga tahap, yaitu :
a. produksi total dengan increasing returns,
b. produksi total dengan decreasing returns, dan
c. produksi total yang semakin menurun.
Disamping
analisis tabulasi dan analisis grafis mengenai hubungan antara produk total,
produk rata-rata, dan produk marginal dari suatu proses produksi seperti
diatas, dapat pula
digunakan analisis matematis. Sebagai contoh, misalnya dipunyai fungsi produksi :
Y = 12X2 – 0,2 X3,
digunakan analisis matematis. Sebagai contoh, misalnya dipunyai fungsi produksi :
Y = 12X2 – 0,2 X3,
dimana :
Y = produk
X = faktor produksi.
Y = produk
X = faktor produksi.
2. Produksi
Optimal
Konsep efisiensi dari aspek ekonomis dinamakan konsep efisiensi ekonomis atau efisiensi harga. Dalam teori ekonomi produksi, pada umumnya menggunakan konsep ini. Dipandang dari konsep efisiensi ekonomis, pemakaian faktor produksi dikatakan efisien apabila ia dapat menghasilkan keuntungan maksimum. Untuk menentukan tingkat produksi optimum menurut konsep efisiensi ekonomis, tidak cukup hanya dengan mengetahui fungsi produksi. Ada syarat lagi yang harus diketahui, rasio harga harga input-output. Secara matematis, syarat tersebut adalah sebagai berikut. Keuntungan (p) dapat ditulis : p = PY.Y -Px.X, di mana Y = jumlah produk;
PY = harga produk;
X = faktor produksi;
Px = harga factor produksi.
Konsep efisiensi dari aspek ekonomis dinamakan konsep efisiensi ekonomis atau efisiensi harga. Dalam teori ekonomi produksi, pada umumnya menggunakan konsep ini. Dipandang dari konsep efisiensi ekonomis, pemakaian faktor produksi dikatakan efisien apabila ia dapat menghasilkan keuntungan maksimum. Untuk menentukan tingkat produksi optimum menurut konsep efisiensi ekonomis, tidak cukup hanya dengan mengetahui fungsi produksi. Ada syarat lagi yang harus diketahui, rasio harga harga input-output. Secara matematis, syarat tersebut adalah sebagai berikut. Keuntungan (p) dapat ditulis : p = PY.Y -Px.X, di mana Y = jumlah produk;
PY = harga produk;
X = faktor produksi;
Px = harga factor produksi.
3. Least
cost combination
Persoalan least cost combination adalah menentukan kombinasi input mana yang memerlukan biaya terendah apabila jumlah produksi yang ingin dihasilkan telah ditentukan.
Dalam hal ini pengusaha masih dapat menghemat biaya untuk menghasilkan produk tertentu selama nilai input yang digantikan atau disubstitusi masih lebih besar dari nilai input yang menggantikan atau yang mensubstitusi. Jadi, selama DX2.P2 > DX1.P1 maka penggantian DX2 oleh DX1 masih menguntungkan.
Persoalan least cost combination adalah menentukan kombinasi input mana yang memerlukan biaya terendah apabila jumlah produksi yang ingin dihasilkan telah ditentukan.
Dalam hal ini pengusaha masih dapat menghemat biaya untuk menghasilkan produk tertentu selama nilai input yang digantikan atau disubstitusi masih lebih besar dari nilai input yang menggantikan atau yang mensubstitusi. Jadi, selama DX2.P2 > DX1.P1 maka penggantian DX2 oleh DX1 masih menguntungkan.